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IV. CONCLUSIONS

Two original electronically switchable microstrip-line directional
filters are presented. They provide substantially improved frequency
characteristics compared to the conventional constructions. The
unique feature of them is that they offer high-level isolation,
independent of frequency, over a wide frequency range for two pairs
of opposite ports. These isolation characteristics are also independent
of the p-i-n diode parameters if the diodes used are identical. It
should be pointed out that the above conclusions relate to the filters
operating in two modes (reception and transmission), i.e., when the
diodes are forward or reverse biased. Thus, these directional filters
seem to be suitable for some radio-communication applications.

APPENDIX

Fig. 10 presents equivalent circuits for MA4P7000 p-i-n diode
under forward and reverse bias. The following parameters have
been used for calculations:Cp = 0:001 pF, Lp = 0:001 nH,
Rs(I0 = 100 mA) = 0:8 
, CT (UR = 100 V) = 0:70 pF, and
R(UR = 100 V) = 200 k
.
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Radiation Properties of a Planar Dielectric Waveguide
Loaded with Conducting-Strip Diffraction Grating

Aleksander B lȩdowski and W ladys law Żakowicz

Abstract—A dielectric planar waveguide periodically loaded with con-
ducting strips is considered as a possible antenna for millimeter-wave
range. We show that separating the grating from the waveguide leads to
the reduction of radiative attenuation of the waveguided radiation and
substantial narrowing of the angular spread of the diffracted radiation.

Index Terms—Diffraction grating antennas, leaky-wave antennas.

I. INTRODUCTION

Diffraction gratings placed on the surface of dielectric waveguides
are very important components of many microwave devices serving
either as transmitting or receiving antennas and also subject to
numerous theoretical and experimental studies.

Our theoretical analysis, developed along a general electromagnetic
theory of gratings [1] and [2], is devoted to a planar dielectric
waveguide loaded with periodic infinitely thin metallic strips made
of perfect conductor. We consider this system for a millimeter-
wavelength radiation.

Similar systems have often been studied in the past in [3]–[6].
Generalizing these discussions, we admit an additional gap between
the grating and the waveguide, allowing better control of the coupling
between the guided and diffracted waves. For a weaker coupling
and correspondingly slower attenuation, the outgoing beam can be
concentrated in a much narrower angular sector. Often this is a
desired beam property. Such a grating separation is present in a
technical construction of a millimeter-wave antenna with variable
grating period [8].

In Section II, the basic equations describing waves in the investi-
gated structure are derived. We consider only the waves propagating
perpendicularly to the strips and having either TE or TM polar-
izations. In Section III, numerical results showing the complex
propagation constant as a function of the various waveguide and
grating parameters are presented. Some discussion on the angular
width of the diffracted radiation is also given.

II. THEORY

We consider a dielectric waveguide of thicknessh and dielectric
constant�w loaded with a diffraction grating formed by parallel
metallic strips distributed periodically with a periodd. The grating
is separated from the waveguide by a dielectric layer of thicknessb

and dielectric constant�b. The metallic strips are made of perfect
conductor, have widthw, and infinitesimal thickness. The whole
system is surrounded by a homogeneous dielectric medium with
dielectric constant�v. The system, along with a coordinate system
used, are shown in Fig. 1.

We assume the electromagnetic waves to be monochromatic with
the time-dependence factorexp (i!t), perpendicularly propagating
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Fig. 1. Geometry of the dielectric waveguide with metallic diffraction grat-
ing. Regions 1 and 4 correspond to a cover vacuum, region 3 to the waveguide,
and region 2 to the spacing dielectric layer.

to the grating strips, i.e., along thez-axis. Thus, the waves are
y-independent and can be attributed to two polarization classes
called TE and TM polarization. In both polarizations, the relevant
component of the EM field satisfies the same equation:

�xx + �zz + k
2

o�(x)� = 0 (1)

where�(x; z) stands forEy(x; z) in the TE case, and forHy(x; z)

in the TM case.�(x) is equal to�v , �b, or �w, depending on the layer,
andko = !=c. According to Maxwell equations, the remaining field
components(Hx andHz in the TE case andEx andEz in the TM
case) can be obtained from� by differentiation.

Due to the periodicity of the system, we can make use of the
Floquet theorem and look for solutions in the form of quasi-periodic
functions. For both polarizations, the function�(x; z) in four regions
10, 20, 30, and40 (shown in Fig. 1) can be assumed in the following
form:

�(x; z) =

1

n=�1

exp (�i�nz)
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v

n(x� b)]; (10)

bn cos q
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The particular form of thex-dependence comes from (1). The
coefficients�n, qn, etc., are�n = �o + nK = �o + n(2�=d); qvn =

�vk2o � �2n; q
w

n = �wk2o � �2n, andqbn = �bk2o � �2n, with �o
being the complex free parameter to be determined. A proper branch
selection of the multivalued square-root function above is discussed
in [2].

The amplitudesan; � � � ; fn in (2) must be chosen in such a way
that the field-continuity conditions are fulfilled. The homogeneity
of interfaces between regions20–30 and 30–40 ensures that the
relationships betweenbn, cn, dn, en, and fn can be determined
analytically. For TE polarization
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w
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In the corresponding expressions for TM polarization, one must
replace
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qwn
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and
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: (4)

The tangent-field values just beneath the grating are
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At the interface occupied by the grating, one has the continuity
conditions between the grating strips, as well as the boundary
conditions at the top and bottom sides of the conductors.

For the TE waves, the continuity ofEy andHz in the interval
0 � z <d � w leads to

an exp (�i�nz)� fnpn exp (�i�nz) = 0

an(�iq
v

n) exp (�i�nz)� fnq
b

nrn exp (�i�nz) = 0 (6)

while for d � w � z <d, the conditionEy = 0 on both strip sides
gives

an exp (�i�nz) + 0 =0

0 + fnpn exp (�i�nz) = 0: (7)

The corresponding equations for the TM polarization are very similar.
Equations (6) and (7) taken at each value ofz form an infinite set

of linear homogeneous equations for two countable and infinite sets
of amplitudesan andfn. The numerical approach used in this paper
utilizes truncation of this set to a finite number of amplitudes as well
as a discretization of thez-variable at the equally spaced pointszn.
A consistency of this procedure to theN th order is guaranteed, if we
select2(2N + 1) amplitudesa

�N , � � �, aN and f
�N , � � �, fN and

than we impose the continuity/boundary conditions at the2N + 1

pointszm = (m� 0:5)�, � = d=(2N + 1), m = 1; � � � ; 2N + 1.
In this way, the problem is reduced to the finite and homogeneous
set of2(2N + 1) linear algebraic equations. It can be written in the
matrix form

MMM � uuu = 0 (8)

whereuuu = (a
�N ; � � � ; aN ; f�N ; � � � ; fN). The form of the matrix

MMM can be deduced from (6) and (7).
Nonvanishing solutions of this set exist only when

det MMM = 0: (9)

The determinant depends (besides on all geometrical and material
parameters) on the value of�o. With other parameters fixed, (9)
gives permitted values of�o. For each�o satisfying the characteristic
equation, there exists a nontrivial solution of (8) for theuuu vector.

III. RESULTS

Our numerical examples refer to a planar quartz waveguide
(SiO2; �w = 3:78) with metallic grating made of perfect conductor.
The operating frequency is assumed to be around 90 GHz, so the
typical dimensions for wavelengths, waveguide thickness, grating
period, and grating separation are in the millimeter range. The
surrounding media as well as the layer separating the grating from
the waveguide are assumed to be vacuum(�b = �v = 1). The
waveguides chosen in our examples are operating in a single-mode
regime, so their thickness does not exceeds 1 mm. Under this
condition, we have found that several dozens of amplitudes (both
an andfn) have to be used in order to reach a reasonable accuracy
of the method.

In Fig. 2, the real and imaginary part of�o for the TE waves
as a function of the grating period for two grating separations are
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Fig. 2. Propagation constant<e� and attenuation constant�=m� as a
function of the grating periodd. TE case:ko = 2mm�1, h = 1 mm,
w=d = 0:5.

Fig. 3. <e� and=m� as a function of the separation distanceb for several
w=d ratios. TE polarization, thick waveguide:h = 1 mm, ko = 2mm�1,
d = 2 mm.

shown. For small grating periods(d<1.2 mm) there are no diffracted
waves. Nonvanishing=m(�o) for d>1.2 mm is associated with the
existence of diffracted waves and the corresponding energy leakage
from the waveguide. The curves behave rather smoothly in this
interval—except the vicinity ofd = 2 mm. Here, the diffracted
wave would propagate perpendicularly to the waveguide, but as the
damping constant approaches zero this diffraction is absent. Similar
phenomena has also been reported in [3].

Separating the grating from the waveguide decreases the phase
velocity v� = !=<e(�o) and the damping. The increase of<e(�o)
with growing grating separation is a typical property of TE modes.
As is seen in the figure, in this strongly bounded-wave case, the
separationb = 0:1 mm (1/10 of the waveguide thickness) is enough
to reduce the damping constant by a factor of two.

Fig. 4. <e� and=m� as a function of the separation distanceb for several
w=d ratios. TM polarization:h = 0:4 mm, ko = 2mm�1, d = 2 mm.

Fig. 5. Angular divergence of the diffracted beam as a function of the grating
periodd. TE polarization:h = 1 mm, ko = 2mm�1, d = 2 mm.

In Fig. 3, a dependence of the propagation constant�o on the grat-
ing separationb for several values of thew=d ratio is given. The way
thew=d ratio influence�o is generally complex. However, when one
operates away from the regime corresponding to theperpendicular
diffraction the picture becomes simpler. With increasingw=d ratio,
<e(�o) gets smaller, while the damping constant first increases and
than decreases, typically reaching its maximum at the some value
betweenw=d = 0:4 and0:7. In the thin waveguides, the TE waves
can propagate only when the grating separation exceeds some critical
distance.

Phase constant and damping constant as functions of the grating
separationb for severalw=d ratios in the case of TM polarization are
shown in Fig. 4. In contrast to the TE case, for this polarization
the increase of the grating separation causes the decrease of the
phase constant<e(�o). Another interesting feature is that the TM
diffraction seems to prefer larger values ofw=d as opposite to the
TE diffraction—the succession of curves in Fig. 4(b) is just reversed,
as given in Fig. 3(b). The same effect has been reported in [5].

In Fig. 5, we show the calculated angular divergence of the
diffracted beam as the function of grating periodd for chosen grating
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separationsb. Other parameters are the same as in Fig. 2. The curves
have been obtained from the far-field angular intensity distribution

j�(r; #)j2 ' ja1j
2 1

2�kr

k2 cos2 #

[=m(�1)]2 + [<e(�1)� k sin#]2
(10)

with the angular divergence� defined as the half-width of this
distribution. Here,# is an angle between the vectorrrr = (x; z) and
the positivex-axis, andr = jrrrj. Equation (10) has been calculated
with the help of a appropriate two-dimensional (2-D) diffraction
integral [7].

It is seen from Fig. 5 that the value of� decreases and becomes a
smoother function ofd when the grating separation becomes larger.
This is a consequence of a weaker coupling of the guided mode
with the grating at large separations and smaller changes of the
propagation parameters with the varying grating period. Smoothing of
the�-curves goes together with the narrowing of the radiated beams.
It is a fortunate property for applications, where the wide scanning
angles and narrow beams are of great importance.
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The Influence of Ground-Plane Width on the
Ohmic Losses of Coplanar Waveguides

with Finite Lateral Ground Planes

Giovanni Ghione and Michele Goano

Abstract— In this paper, analytical computer-aided-design (CAD)-
oriented conformal-mapping approximations are presented for the
high-frequency attenuation of symmetric and asymmetric coplanar
waveguides (ACPW’s) with finite-extent lateral ground planes. A
discussion is presented on the effect of ground-plane width on the losses,
and design criteria are derived.

Index Terms—Attenuation, conformal mapping, coplanar waveguides,
design automation software.

I. INTRODUCTION

Coplanar waveguides (CPW’s) are currently used extensively in
both microwave integrated circuits (MIC’s) and electro-optic com-
ponents on LiNbO3 substrates. In practice, such lines always have
ground planes of finite width, as shown in the insets of Figs. 1 and
2 for the symmetric CPW and the asymmetric CPW, respectively.
While in the design of MIC’s the choice of lateral ground width
is mainly driven by layout considerations (i.e., the ground-plane
width c � b should be large enough to avoid coupling between
neighboring lines, without unnecessarily increasing the circuit size
[1]), the performance optimization of electro-optic components such
as amplitude and phase modulators often requires the use of very
narrow lateral ground planes, as discussed in [2], [3].

From the standpoint of the CPW performances, reducing the
ground-plane width causes an increase of the line impedance [see
[1] for the symmetric and [4] for the asymmetric case, which can
be derived from the analysis of the asymmetric coplanar stripline
(ACPS)] but also of the line losses, which can significantly exceed
those of the ideal structure if ground planes are narrow. To analyze
such an effect, this paper presents a new closed-form expression for
the skin-effect conductor attenuation of the symmetric CPW with
finite-extent lateral ground planes, while the losses of the asymmetric
CPW are derived by suitably rearranging the expression valid for the
ACPS [4].

The analysis technique is the conformal mapping method intro-
duced by Owyang and Wu for the analysis of conductor losses
in the symmetric CPW with infinite lateral ground planes [5],
and later exploited by Ghione [4] for the loss analysis of general
asymmetric CPW’s and striplines. The analytical expressions derived
are compared with numerical results obtained from two electromag-
netic simulators (HFSS1 and Explorer2) with fairly good agreement.
Finally, some design criteria are derived both for the symmetric and
asymmetric case.

II. A NALYSIS

Despite its well-known limitations in the low-frequency range [6],
[7], the skin-effect analysis of losses in a planar transmission line
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